Green synthesis of functionalized oxaphospholes

Faramarz Rostami-Charatia,b,* Reza Akbaria

aDepartment of Chemistry, Faculty of Basic Sciences, GonbadKavous University, GonbadKavous, Iran.
bResearch Center for Conservation of Culture Relics (RCCCR), Research institute of Cultural Heritage & Tourism, Tehran, Iran.

Received: February 2019; Revised: March 2019; Accepted: April 2019

Abstract: The reaction of propiolate with triphenylphosphine (Ph\textsubscript{3}P) in the presence of \textit{N}-alkylisatins led to oxaphosphole derivatives in good yields. The reaction of dialkyl acetylenedicarboxylates with Ph\textsubscript{3}P in the presence of \textit{N}-alkylisatins led to other derivatives of oxaphosphole in good to excellent yields.

Keywords: Acid chlorides, Ammonium thiocyanate, \textit{N}-formylmorpholine, 3-Hydroxy-2-butanone, Esterification.

Introduction

Organophosphorus compounds are widely used in organic synthesis [1]. In recent years there has been increasing interest in the synthesis of organophosphorus compounds, that is, those bearing a carbon atom bound directly to a phosphorus atom. This interest has resulted from the recognition of the value of such compounds in a variety of biological, industrial and chemical synthetic uses. A large number of methods have appeared describing novel syntheses of organophosphorus compounds [1-4]. The successful attack by nucleophilic trivalent phosphines on a carbon atom is facilitated when the latter is conjugated with a carbonyl group, or when it is part of an unsaturated bond otherwise activated [1-10]. Organophosphorus compounds are synthetic targets of interest, not least because of their value for a variety of industrial, biological, and chemical synthetic uses [11-16]. The physical properties and chemical reactivity of phosphate esters interlinks many areas in chemistry and biology.

Introduction of a phosphate monoester into a molecule such as a drug candidate enhances the water solubility, hence altering its bioavailability [17-19]. As a result, a large number of methods have appeared describing novel syntheses of organophosphorus compounds. The reaction of Ph\textsubscript{3}P with activated acetylenic compounds in the presence of \textit{N}-alkylisatins led to oxaphosphole-4-carboxylate 4 in excellent yields (Scheme 1).

\begin{align*}
\text{O} & \quad \text{R} \quad \text{CO}_2 \text{R}' \quad \text{PPh}_3 \\
\text{O} & \quad \text{R} \quad \text{CO}_2 \text{R}' \\
\end{align*}

\textbf{Scheme 1: Synthesis of isatin derivatives}

*aCorresponding author: Tel: 0098-9112797409; Fax: 0098-8633677203, E-mail: f_rostami_ch@yahoo.com
Result and Discussion

Structures of compounds 4a–4f were apparent from their mass spectra, which displayed, in each case, the molecular ion peak at appropriate m/z values. The 1H- and 13C-NMR spectroscopic data, as well as IR spectra, are in agreement with the proposed structures. The 1H-NMR spectrum of 4a exhibited a singlet at (δ = 3.25 ppm) arising from the NMe proton. The carbonyl group resonances in the 13C-NMR spectra of 4a appear at δ = 168.4 (JCP = 21.2) and 169.7 ppm. The 31P-NMR signal of 2a was found at (δ = -50.35 ppm). The mass spectrum of 4a displayed the molecular ion peak at m/z = 521, which is consistent with the 1:1:1 adduct of Ph₃P, ethyl propiolate and N-methylisatin.

Mechanistically, it is conceivable that the reaction involves the initial formation of a 1,3-dipolar intermediate 5 between triphenylphosphine 2 and activated acetylenic compounds 1, which reacts with the carbonyl group of N-alkylisatin to produce 6. Cyclization of this zwitterionic intermediate leads to the spiro compound 4 (Scheme 2).

Scheme 2: Proposed mechanism for the synthesis of 4

Conclusion

In summary, the reaction of activated acetylenic compounds with N-alkylisatins in the presence of Ph₃P led to oxaphosphole-4-carboxylate derivatives with potential synthetic interest. The present procedure has the advantage that the reaction is performed under neutral conditions, and the starting material can be used without any activation or modification.

Experimental

M.p.: Electrothermal-9100 apparatus; uncorrected. IR Spectra: Shimadzu IR-460 spectrometer. 1H-, 13C-, and 31P-NMR spectra: Bruker DRX-500 AVANCE instrument; in CDCl, at 500.1, 125.7, and 202.4 MHz, resp.; △ in ppm, J in Hz. EI-MS (70 eV): Finnigan-MAT-8430 mass spectrometer, in m/z. Elemental analyses (C, H, N) were performed with a Heraeus CHN-O-Rapid analyzer. All chemicals were obtained from Fluka and were used without further purification. Alkylisatins were prepared according to the literature procedure [20].

General procedure for preparation of compounds 4a-f:

To a stirred solution of activated acetylenic compounds 1 (2 mmol) and N-alkylisatin 3 (2 mmol) undersolvent-free conditions was added Ph₃P 2 (2 mmol) at room temperature. The reaction mixture was then stirred for 4 h. After completion of reactions (monitored by TLC (5:1) n-hexane/ethyl acetate, 15 mL water poured into the mixture of reaction. The solid residue was filtered and washed with Et₂O to afforded pure title compounds.

Methyl 1,2-dihydro-2-oxo-1-methyl-spiro-[3H-indol-2,2,2-triphenyl-2,5-dihydro-1,2-oxaphosphole-4-carboxylate (4a):

Yellow crystals, mp 210-212°C, 0.98 g, yield 94%. IR (KBr) (νabs/cm⁻¹): 1726, 1682, 1459, 1110, 1031 and 1009. MS, m/z (%): 521(M⁺), 5, 476 (66), 278 (85), 243(64), 201 (62), 149 (34), 169 (100), 45 (100). Anal. Calcd for C₃₂H₂₈NO₅P (521.5): C, 73.69; H, 5.41; N, 2.69; found: C, 73.70; H, 5.40; N, 2.70%. 1H-NMR: δ 1.25 (3 H, t, JHH = 7.2 Hz, Me), 3.25 (3 H, s, NMe), 4.17 (2 H, q, JHH = 7.2 Hz, OCH₂), 6.89 (1 H, d, JHP = 22.7 Hz, CH), 7.09 (1 H, d, JHH = 7.2 Hz, CH), 7.32 (1 H, t, JHP = 7.3 Hz, CH), 7.42 (1 H, d, JHH = 7.3 Hz, CH), 7.48 (1 H, d, JHH = 7.2 Hz, CH), 7.52-7.78 (15 H, 15 CH). 13C-NMR: δ 14.3 (Me), 28.1 (NMe), 61.7 (OCH₂), 91.2 (d, JCP = 49.1 Hz, C₁₃N), 116.7 (CH), 120.3 (CH), 123.6 (CH), 128.1 (CH), 128.6 (d, JCP = 10.2 Hz, C), 129.2 (d, JCP =
Methyl 1,2-dihydro-2-oxo-1-ethyl-spiro-[3H-indol-2,2,2-triphenyl-2,5-dihydro-1,2-3oxaphospholine]-3,4-dicarboxylate (4b):

Yellow powder, mp 196-198°C, 0.96 g, yield 90%. IR (KBr) (νmax/cm-1): 1727, 1680, 1450, 1100, 1029 and 1010. MS, m/z (%): 553(M+, 15), 490 (74), 461(54), 278 (68), 257 (62), 175 (34), 74 (46), 45 (94). Anal. Calcd for C\textsubscript{33}H\textsubscript{35}O\textsubscript{3}P: C, 74.01; H, 5.60; N, 2.60%. 1H-NMR: δ 1.24 (3 H, t, J\textsubscript{HH} = 7.2 Hz, Me), 1.37 (3 H, t, J\textsubscript{HH} = 7.2 Hz, Me), 4.13 (2 H, q, J\textsubscript{HP} = 25.4 Hz, CH), 7.34 (1 H, d, J\textsubscript{HP} = 7.2 Hz, CH), 7.42 (1 H, t, J\textsubscript{HH} = 7.2 Hz, CH), 7.50 (1 H, d, J\textsubscript{HP} = 7.3 Hz, CH), 7.73 (1 H, d, J\textsubscript{HP} = 7.2 Hz, CH), 7.45-7.84 (15 H, m, 15 CH). 13C-NMR: δ 13.3 (Me), 14.0 (Me), 38.4 (CH), 62.1 (OCH\textsubscript{3}), 93.2 (d, J\textsubscript{CP} = 35.4 Hz, C\textsubscript{iso}), 118.3 (CH), 120.4 (CH), 124.2 (CH), 127.4 (CH), 127.9 (d, J\textsubscript{CP} = 8.0 Hz, C), 128.4 (d, J\textsubscript{CP} = 21.1 Hz, 6 CH), 129.1 (3 CH), 132.0 (d, J\textsubscript{CP} = 31.9 Hz, 6 CH), 135.4 (d, J\textsubscript{CP} = 226.5 Hz, 3 C), 144.1 (d, J\textsubscript{CP} = 194.1 Hz, CH), 149.2 (C), 154.2 (d, J\textsubscript{CP} = 15.4 Hz, C), 166.5 (d, J\textsubscript{CP} = 21.2 Hz, C=O), 168.7 (d, J\textsubscript{CP} = 19.8 Hz, C=O). 31P-NMR: δ 52.42.

Methyl 1,2-dihydro-2-oxo-1-benzyl-spiro-[3H-indol-2,2,2-triphenyl-2,5-dihydro-1,2-3oxaphospholine]-4-carboxylate (4c):

Pale yellow crystals, mp 195-197°C, 0.85 g, yield 75%. IR (KBr) (νmax/cm-1): 1727, 1732, 1672, 1478, 1166, 1086 and 1004. MS, m/z (%): 593 (M+, 10), 548 (82), 503 (76), 315 (54), 278 (96), 161 (46), 146 (88), 45 (100). Anal. Calcd for C\textsubscript{33}H\textsubscript{35}O\textsubscript{3}P: C, 70.82; H, 5.43; N, 2.36; found: C, 70.80; H, 5.40; N, 2.35%. 1H-NMR: δ 1.23 (3 H, t, J\textsubscript{HH} = 7.2 Hz, Me), 4.24 (2 H, q, J\textsubscript{HP} = 7.2 Hz, OCH\textsubscript{3}), 4.82 (2 H, m, CH\textsubscript{2}), 6.94 (1 H, d, J\textsubscript{HP} = 20.8 Hz, CH), 7.15 (1 H, d, J\textsubscript{HP} = 7.2 Hz, CH), 7.26-7.29 (3 H, m, 3 CH), 7.34 (1 H, d, J\textsubscript{HP} = 7.2 Hz, 2 CH), 7.37 (1 H, t, J\textsubscript{HH} = 7.2 Hz, CH), 7.44 (1 H, d, J\textsubscript{HH} = 7.3 Hz, CH), 7.45-7.80 (16 H, m, 16 CH). 13C-NMR: δ 14.1 (Me), 49.2 (CH\textsubscript{2}), 61.4 (OCH\textsubscript{3}), 91.7 (d, J\textsubscript{CP} = 30.2 Hz, C\textsubscript{iso}), 117.4 (CH\textsubscript{2}), 120.0 (CH), 122.4 (2 CH), 123.9 (CH), 125.8 (CH), 127.9 (2 CH), 125.8 (CH), 128.6 (d, J\textsubscript{CP} = 9.4 Hz, C), 129.1 (d, J\textsubscript{CP} = 18.5 Hz, 6 CH), 129.9 (3 CH), 132.4 (d, J\textsubscript{CP} = 28.4 Hz, 6 CH), 135.6 (C), 137.4 (d, J\textsubscript{CP} = 230.2 Hz, 3 C).
Dimethyl 1,2-dihydro-2-oxo-1-benzyl-spiro-[3H-indol-2,2,2-triphenyl-2,5-dihydro-1,2-[3]-oxaphosphate]-3,4-dicarboxylate (4f):

Pale yellow crystals, mp 178-180°C, 0.89 g. yield 70%. IR (KBr) (νmax/cm⁻¹): 1725, 1720, 1642, 1472, 1165, 1090 and 1012. MS, m/z (%): 641 (M⁺, 10), 610 (84), 579 (74), 368 (54), 278 (96), 237 (46), 146 (88), 91 (96), 31 (100). Anal. Calcd for C₉₅H₆₅NO₄P (641.66): C, 73.00; H, 5.03; N, 2.18; found: C, 73.00; H, 5.05; N, 2.20%. 1H-NMR: δ 3.75 (3 H, s, OMe), 4.11 (3 H, s, OMe), 4.80 (1 H, d, JHH = 15.6 Hz, CH), 5.01 (1 H, d, JHH = 15.6 Hz, CH), 7.15 (1 H, d, JHH = 7.4 Hz, CH), 7.30 (1 H, t, JHH = 7.5 Hz, CH), 7.36 (1 H, d, JHH = 7.5 Hz, CH), 7.38 (2 H, t, JHH = 7.5 Hz, 2 CH), 7.45 (2 H, t, JHH = 7.7 Hz, 2 CH), 7.54 (2 H, d, JHH = 7.5 Hz, 2 CH), 7.62-7.84 (15 H, m, 15 CH). 13C-NMR: δ 46.2 (NCH₂), 51.4 (OMe), 52.2 (OMe), 89.3 (d, JCP = 47.8 Hz, C₉,O), 116.5 (CH), 119.1 (CH), 123.4 (2 CH), 123.6 (CH), 125.9 (CH); 127.7 (2 CH), 128.3 (CH), 128.5 (d, JCP = 24.2 Hz, C), 128.9 (d, JCP = 20.1 Hz, 6 CH), 130.2 (3 CH), 132.4 (d, JCP = 34.2 Hz, 6 CH), 135.9 (C), 136.2 (d, JCP = 234.5 Hz, 3 C), 148.4 (C), 151.2 (d, JCP = 190.1 Hz, C), 162.4 (d, JCP = 26.5 Hz, C=O), 164.8 (C), 167.5 (d, JCP = 20.3 Hz, C=O), 169.5 (C=O). 13P-NMR: δ 44.2.

References